
Sam Padgett

DATA STRATEGY & LOOKER
HEALTH CHECK

Table of Contents

Project Details 2

Executive Overview 2

Current State Assessment 3

Model Review 4

Evaluation Approach 5

Pipeline Evaluation 5

Looker Instance Evaluation 6

Future State Recommendations 13

DBT Pipelines 13

Looker /LookML 19

Attachments 22

Attachment I - Workshops & Collateral 23

Attachment II - LookML Work Session Notes 24

Attachment III: OKR/KPI Investigation 25

Attachment IV - Miscellaneous Looker Tips 27

Attachment V - Looker/BQML (plus public weather data!!) Example 28

Project Details

Project Name Data Strategy - SOW #1

Project Type Assessment & Data Strategy

Project Start Date 8/8/22

Project End Date 9/13/22

Project Sponsor

Project Manager

Executive Overview

Pander conducted pre-engagement interviews and surfaced the concerns and resulting impacts
captured in the table below:

Concern Desired Impact

Concern around best practices on current
Looker implementation and consistency in
LookML

Ability to evaluate and implement the best
performance out of the current tech stack

- Structure and boundaries for each tool
(dbt & Looker)

Ability to evaluate the advantages of utilizing
Looker with BigQuery vs Redshift

Current pain points around batch processing
and refresh times

Goal is to be closer to realtime,
especially around the holidays

Ability to evaluate the best utilization of Look
ML vs dbt

- Improve best practices and consistency

Consistency of computed metrics within
Looker

Ability to explore the discoverability within
Looker

Client has a modern cloud based ELT architecture consisting of DBT for the ELT layer and Looker

for reporting. Our assessment focused on utilization of these components from a best practices

perspective.

 We also provided guidance on a possible migration to BigQuery to overcome constraints in the

current Redshift database platform and leverage BQ Machine Learning functionality.

We conducted thirteen collaborative workshops where we investigated the current dbt based

data pipeline, demonstrated methods, techniques, and third party tools for analyzing Looker and

managing change across the platform. We also demonstrated the integration of BigQueryML

within the Looker environment, and reviewed “beyond vanilla BI” capabilities and resources in

the context of a “Looker - Art of the Possible” presentation.

In lieu of a POC deliverable, we spent several collaborative sessions working through a Looker

change management approach for swapping out references to the retired tagging functionality in

Zendesk.

High level recommendations include:

1. Migration of derived table logic to dbt

2. Modularization of the ELT pipeline

3. Looker environment cleanup guided by the output of the demonstrated audit tools and

methodologies.

4. Creation of LookML versions of dashboards for enhanced change management and

inclusion in source code control.

Additional details and best practices guidance are included in the content below and

supplemented by the provided attachments.

Current State Assessment

The process of investigating the concerns raised in the pre-engagement interviews included a

review of Client’s current environment focusing on the following areas:

● Model Review

● Evaluate dbt pipelines

● Evaluate LookML layer

Model Review

Client’s application model is built on the synergistic capabilities of dbt and Looker. While

extremely complimentary, overlaps in functionality make the decision on where to draw the

boundary between the two tools confusing.

At Contractor, we’re seeing our larger customers move sql application logic formerly housed in

Looker derived tables to dbt. This has the following benefits:

● Ability to leverage the dbt’s lineage graph feature.

● PDT’s - materialization management consistent with existing pipeline. An incremental

update option is available within Looker, but dbt is the prefered choice.

● Subsequent modularization, optimization, dependency management. (Presumes an initial

1:1 migration to dbt. Modularization is discussed below.)

Looker supports two varieties of derived tables - Native, based on the LookML modeling

language; and SQL-based, as the name implies, built on a sql script. Both varieties have the

capability to be persisted (i.e. materialized).

The current count of derived tables across the Client project are shown in the table below.

 PDT Non PDT

Native derived table 3 24

SQL-based derived table 16 79

The color intensity indicates suggested priority for movement to dbt - darkest first,etc..

As a general strategy, migration is based on the following:

PDT’s first - scheduling, incremental updates

SQL-based - More complex business logic here

Non PDT/NDT - low priority - typically simple aggregations

Any tables that have dynamic filters (i.e. filters based on user supplied prompt responses), can

not be moved to dbt. PDT’s inherently do not support dynamic filters, and interestingly, there are

no dynamic filters on any of the other derived tables.

The reference material includes a python script we used to extract the sql from the SQL-based

derived tables and construct ‘legacy’ models for the derived tables in the KPI Views folder.

Evaluation Approach

The pipeline and Looker audit was conducted in conjunction with eleven collaborative work

sessions equally split across the two subject areas.

Two additional sessions were conducted to demonstrate:

● Looker hosted BigQuery Machine Learning prototype

● Discuss BigQuery Migration Workstreams and SQL Translation Aids

These work sessions are enumerated in attachment I, along with links to produced collateral

and/or public reference materials.

Pipeline Evaluation

Client’s dbt instance primarily serves as a repository for the raw data and base tables used to

create derived tables in their Looker instance. In order to provide a more focused and deeper

understanding of the current pipeline, the queries used to create Looker’s KPI views were

selected for analysis as the KPIs are priority metrics used for top end reporting.

The analysis process was carried out by creating flowcharts for each KPI table and a detailed

source to target breakdown to determine tables pulling from raw data rather than dbt sources as

well as helping to identify overlapping joins and/or duplication of effort amongst the tables that

create the kpi tables.

- Source-to-target breakdown

- Derived table breakdown

-

The findings of the analysis are as follows:

- Many of the initial steps to create a more efficient and mature data stack are

already present: table organization, complex queries in dbt, documentation

- Only a small portion of Looker views are tied to directly to corresponding dbt

tables (dimension and fact tables)

- Dbt sources aren’t clearly defined and in many cases tables are pulling from raw

data sources

- Tables are created in a somewhat ad hoc nature rather than following a formal

structure or built with modularity in mind (dbt modularity discussed further below)

- There is some testing within the dbt tables, but no formal governance

- Dbt tables are version controlled in github, but no formal code review or approval

needed before deploying a PR. (This situation is organic as there is only one dev

currently working on the dbt and Looker pipeline, but a formal process should be

implemented as new devs are added to the team)

Looker Instance Evaluation

Tasks, techniques, and tips on change management tasks covered in the course of our

evaluation are enumerated below.

A. Object Inventory

Initial evaluation steps were to construct an object inventory across the Looker instance

summarized below with details referenced in the attached.

High Level Object Inventory

Derived (SQL) Table 50

DB Table/View 112

Derived (Native) Table 26

Explores 85

Models 6

The Inventory level analysis was enhanced via the use of Henry, a third party utility that

surfaces unused (in last 90 days) models, explores, joins and fields.

Insert table

Example Results

Model Explore Fields Unused Fields

Topline
Sales

sales_date 1991 1080

OUr analysis was augmented through the use of Looker’s search objects feature.

Various search criteria identified in attachment IV.

B. System Administrator Review

Highlights from Looker’s System Activity reporting are captured below

1. User Activity

User Accounts & Adoption

Total Users 75

Standar Users 23

View only Users 46

Weekly Avg Querying Users 49

Percent of users active last 7 days 55%

Total Users 75

Standar Users 23

Avg Minutes per User 75

Avg Queries per User 150

Top Users

Top Sources

The low values for alerts and scheduled tasks suggests possible opportunities to

increase utilization of these features.

2. Content Activity

User Accounts & Adoption

Total Dashboards 160

Total Looks 1295

Scheduled Plans 29

Schedule Distribution good

Dashboard Usage

Looks Usage

3. Database Performance (Last 7 days)

Results from cache

The results from cache show significant drop from prior period, which could be the

result of our activity in the instance. This should be re-examined in the coming

weeks. Replication of the recommendations in the example dashboard review

(specifically dynamic vs static filters) could improve this number in some situations.

Top Explores

Other observations:

● Components_economics pdt build is consistently failing

● At 90 seconds, the segment_flow_custom_query explore has the highest

run time by a substantial margin.

● OKR Dashboard, Rolling 12-week KPIs, and QA meeting Dashboard have

>9 distinct queries exceeding 30 seconds. These dashboards exceed the

25 tile suggested limit and should be evaluated for possible

“modularization”.

4. Instance Performance

Note - Valentine Day Dashboard being refreshed every 15 minutes.

C. Content Validation Output Review

Looker’s Content Validation tool identifies errors within the application by object type

(Dashboard or Look), Content Name, Folder, Model, and Error detail. To facilitate priority

setting, aggregation, analysis, and progress tracking as the error backlog is dealt with,

we’ve constructed a spreadsheet capturing current state, with tips on its production here.

High level summary shows:

https://docs.google.com/spreadsheets/d/1Vf2w5K25Qss-DB9cxwWtSfWiF-CfXKtMdWBoSXLSPec/edit#gid=0

Objects with Errors (84 Looks/ 8

Dashboards

92

Individual errors across following error

categories:

141

Field not found 114

Unknown Explore 21

Unknown Model 5

Calc references field not in

query

1

Note: The System Activity/Errors and Broken Content section provides additional

insight. Particularly useful are the impacted user counts and a view of broken

Looks by user.

D. Dashboards - User Defined vs LookML

Dashboards constructed in the Looker GUI, are considered ‘User Defined’. As we

demonstrated in our LookML work session, these dashboards can be converted to

‘lookml code based dashboards’ by generation of the LookML through the dashboard

interface, and pasting to a new (LookML) dashboard file.

100% of Client’s dashboards are currently constructed as user defined.

From a user interaction and performance standpoint, there is no difference between

these two types of dashboard. However, migrating to LookML brings the dashboard

content into the git repository’s version management, and content becomes accessible to

Looker’s search utility..

For example, in the System Administration review, we recommend replacing a static date

filter with a dynamic date filter to increase the caching utility caching on a specific

dashboard. Once dashboard’s are converted (or at least copied) to LookML, a

comprehensive search and analysis on ‘Filters:’ could be done across all dashboard

objects. Similarly, dependencies on models, explores, fields, and measures could be

mapped.

Absent this step, the referenced dependencies are only accessible via the Looker’s

Content Validator, which only reports on broken objects.

E. Platform Migration Tips

We discussed platform migration, parallel workstream considerations, Google’s batch

SQL translation tool, and referenced their Redshift/Bigquery translation guide. See

Attachment I for resource links.

Migration of pdt’s to dbt provides the advantage of working through sql translation tasks

in a single interface for most of the work. However, just a reminder that the remaining

LookML still has platform specific syntax in the remaining ‘sql:’ statements that will need

validation.

F. Looker/BQML Integration Demo

Contractor’s Joseph L. joined us in one of our work sessions to demonstrate a prototype

he had developed leveraging two different BQML models inside of Looker. His code isn’t

available in a public repository yet, but I’ve included screenshots from a retail demo with

repository links in attachment V.

Future State Recommendations

DBT Pipelines

Recommendations:

A. Move remaining sql based derived tables in Looker to dbt, prioritizing the existing

persistent derived tables (PDTs):

 PDT Non PDT

Native derived table 3 24

SQL-based derived table 16 79

Housing the derived table logic in dbt offers the following advantages:

1. Allows dbt to focus on cleaning, structuring, and validating the tables and Looker

displaying them, resulting in more snappy and responsive Looks and Dashboards.

2. Access to dbt data lineage graph.

3. Provides another layer of testing and validation before committing to Looker’s

production branch.

4. For materialized views, dbt’s incremental update option is preferred over Lookers

capability. Further, this feature is already in use for existing the pipeline, and

avoids introducing complexity into the tech stack.

a. Dbt incremental table materialization

We worked with Steven on several examples through an update to the kpi_unified

aggregate table that can be used as a template going forward.

As a further assist, we’ve provided a python script to automate the dbt model construction

for this ‘legacy’ port of the 95 SQL-based views from LookML to dbt. See code comments

in the script. The 16 PDT views in this subset will need to be configured for materialization.

B. Dbt Modularity

Dbt modularity is a system of naming, structuring, and relating the tables in dbt to logically

and efficiently organize a data stack. This results in a more transparent and standardized

data structure that can be easily explained to new developers and others outside of the

team. See this dbt modularity document for more information.

Creating a modular data stack can result in a drastic restructuring of the current data

tables, so the first step in creating dbt modularity is to migrate legacy code to its own

https://drive.google.com/file/d/1p5f5SvFeAmKyY0gk_o5E3Ck0_7bwWvIu/view?usp=sharing
https://drive.google.com/file/d/1-ClDfJ4k5S-0KqNC2VitsipishvKCIKj/view?usp=sharing

space within dbt for the system to continue to pull from while the modularity work

progresses in the following steps:

1. Create a system of data governance. (dbt and looker data governance demo)

2. Define internal sql standards and formatting. (dbt style guide)

3. Define raw data as dbt sources.

a. Raw data source

b. Dbt source

4. Create modular tables in a staging, intermediate, dimension, and fact hierarchy

(call the data sources from the previous step in the staging tables).

a. Non-modularity

b. Modularity

5. Restructure tables in small pieces over time removing bloat and overlap similar in

the way we worked through them together in co-dev sessions. (Henry)

a. Kpi_unified table only pulling data from needed reference tables

https://www.getdbt.com/coalesce-2020/perfect-complements-using-dbt-with-looker-for-effective-data-governance/
https://github.com/dbt-labs/corp/blob/main/dbt_style_guide.md

6. Rename columns/dimensions so that there is consistency between naming

conventions within the dbt tables and their corresponding Looker views.

(audit_helper)

a. Best practice is to have the dimension names in a Looker view match what

is being output by the corresponding dbt file.

7. Increase the documentation within dbt: update dbt yaml files with description of

tables, primary keys, and unique dimensions, testing within yaml files.

a. Yaml without documentation

b. Yaml with documentation

8. Audit the new tables versus legacy tables. (Spectacles, audit_helper)

We introduced three tools during the workshops to help with audit process that will be

necessary to create the desired future state for the dbt and Looker instance:

audit_helper, Spectacles, and Henry

1. audit_helper is a dbt macro, that once the package has been installed, allows the

user to conduct a variety of actions to compare tables including:

a. Row-by-row

b. Exact column values

c. Column position and data type (example below)

2. Spectacles is a command line tool (for this project) that can validate lookml code

that is currently in production, or code specific to another branch. It has many

useful validation functions that are covered in its develop documentation, but the

most useful for this instance was using the sql validator. This validator allows the

user to spot any errors that the lookml generated sql in Looker’s queries may

produce before the queries are actually ran in an explore, which can save a lot of

time by removing manual steps from the sql validation.

a. Spectacles sql validation example

3. Henry is a command line tool that helps determine model bloat in your Looker

instance and identify unused content in models and explores. It is meant to help

developers cleanup models from unused explores and explores from unused joins

and fields, as well as maintain a healthy and user-friendly instance. Henry could be

particularly useful helping to trim quite excessive bloat found in some of the joins

within the tables when making the transition to dbt handling the majority of

complex queries.

a. Henry unused joins and fields output example

Looker /LookML

Recommendations:

A. Application Governance

Implementation of the subsequent recommendations across the breadth of the Client’s

application is going to require substantial communication with the user community. If not

already in place, we highly recommend the cultivation of “product owners” across logical

subsets of the application. The following breakout of shared dashboards and looks by

folder area is provided as a starting point for reviewing current state of ‘lead users’ across

the organization.

Do not treat this “ownership” designation lightly. Get senior management buy-in to the

importance of this role, and celebrate those contributing to the success and expanding

impact of the Looker application.

Parent Folder Dashboard Count Look Count Owner

Adhoc 12 BI ?

Admin 13 BI

Archive 2 19 BI ?

B2B 2 18

Care 12 75

Care Migration 2

Customer
Experience

2 19

E-Commerce 3 34

Examples 8 138 BI ?

Finance 1 Finance ?

KPI’s 3 43 Finance ?

Inventory 1 9

Loyalty Programs

 2 Marketing ?

Marketing 7 39 Marketing ?

Cloud Flare 1 NA

Del Reports 1 NA

Totals 42 426

B. Retire unused objects surfaced via Henry analysis.

Other than slowing the validation of LookML changes during development/maintenance,

the presence of unused objects does not impact the performance of the Looker instance.

However, the same can’t be said for the upstream pipeline.

C. Systematically Clear Content Validation Errors

As we reviewed in one of our workshops, “field not found” errors do not show in Looks or

Dashboards. The missing field is simply omitted from the output producing a more

aggregated result than originally intended. The error warning is only visible when viewing

at the explore level. Consequently, the presence of 114 “field not found errors” is cause

for concern.

Looker’s Content Validator is a powerful tool for validating changes, and one of the only

options for impact analysis as you pursue retiring unused objects. Weeding through the

existing catalog of errors greatly diminishes its utility.

D. Migrate Derived Table logic to dbt

At the completion of the dbt portion of the derived table migration, create a feature

branch and implement the Looker side of the derived table migration. The change

requires deletion of the select statements and replacing with a reference to the new

model/view created in dbt.

If the existing names are preserved on the new dbt objects, a script could be constructed

to eliminate the tedium of doing this across the 95 derived tables views.

LookML validation and the Spectacles utility should greatly streamline validation of these

changes against production.

E. Clear unused Explores / Populate Explore Description Fields for Remaining

Of the 70 explores in the ToplineSales model, the Henry analysis identified 30 as being

unused in the past 90 days. These need to be evaluated for removal (recommend use of

Content Validator for confirmation of no dependencies - i.e. comment out in model file

and execute Content Validator).

Additionally, recommend that explore description fields be populated for the remaining

explores. These descriptions are visible to users when they hover over the explore name.

F. Enhanced User Facing Documentation

a. Population of field descriptions for dashboard measures and ambiguous

dimension names. This enable users to click the information icon and see

calculation logic, etc…n

G. Increased visibility of support level documentation

Observed several instances of ‘point in time’ hard coding of filters in some of the view

files. For example, Mothers day 2021, Valentines day 201xx. Suggest capturing update

requirements and upstream data providers in the project manifest file.

H. Create LookML versions of Dashboards

 As discussed in the evaluation section.

I. Scheduling/Caching Review

Datagroups review in conjunction with pdt migration (example - noticed 2021 vday report
is on refresh schedule - suspect no ones using?

J. Dashboard Tuning

i. Tile limits - “modularize” with text box links to facilitate workflow between

component dashboards

ii. Dynamic filters for scheduled dashboards

iii. Evaluate caching / datagroup assignments for appropriate refresh frequency in

conjunction with scheduling

b. Tighten include statements i.e. */

K. Best Practices/UAT Checklist

L. Derived Table Dynamic Filters Observation

a. Not using Liquid at all in derived view construction

i. What does that mean??

1. Bringing full result set back and filtering on final pass?

M. Prepare for retirement of Enabled Legacy Features

a. Revert to Legacy Dashboards

b. Allow double click to select text in textarea in Table Visualizations

c. Use Legacy LookML Runtime

N. Consider leveraging of Looker’s Homepage, push notifications, and ability to add custom

content to the help menu to facilitate user communication. See attachment IV for

reference links.

Attachments

Attachment I - Workshops & Collateral

Note: Most of content shared below is housed currently housed on Contractor External drive

 Workshop Topic
Date

Notes/References

 dbt/pipeline

Looker

1 Current State Assessment (challenges, constraints, etc) 8/9 Agreement on pipeline review.

2 Current State Assessment - BI & Reporting Ecosystem
Overview

8/10 - LookML analysis and audit

3 Current State Assessment - Data Sources Overview 8/10 Dbt pipeline working session

4 Current State Assessment - Data Storage
Overview Redshift

8/11 DBT pipeline working session

5 Current State Assessment - Data Pipelines Overview 8/11 DBT pipeline working session,
- dbt- Refactoring SQL for Modularity

6 Current State Assessment - SDLC Overview Evaluate DRY
(Don't Repeat Yourself) Coding Best Practices

8/12 - LookML Best Practices

7 Platform Migration - Workstreams/Sql Translation 8/17 - BQ Conversion Workstreams

- Batch SQL Migration Tool

8 KPI Unified - pipeline review 8/18 - Flowchart of data flows for KPI views
- kpi base - target-to-source

 dbt working session

9 Looker - “Art of the Possible” deck, and BigQuery Machine
Language - Looker demo

8/26 - Looker - Art of the Possible
*Deck, demo code repository

10 Looker IDE, Content Validator, UAT Checklist,System
Activity Reports / Long running dashboard sample
investigation, Review use of Henry utility

Added link for python script for legacy table construction
in dbt (for derived table views).

8/31 - Looker Analysis with Henry
- Looker User Acceptance Testing Guide

- Looker UAT Checklist

FYI - Looker IDE Tutorial videos:
- LookML Editor_1,

- LookML Editor_2

https://drive.google.com/drive/folders/0ACKxpvoO26HwUk9PVA
https://docs.google.com/spreadsheets/d/1i1fXIftGrmvdQJyKOXkxSINAWyjQRfxSBV86ncdcs74/edit#gid=101048519
https://docs.google.com/spreadsheets/d/1i1fXIftGrmvdQJyKOXkxSINAWyjQRfxSBV86ncdcs74/edit#gid=101048519
https://drive.google.com/file/d/1-ClDfJ4k5S-0KqNC2VitsipishvKCIKj/view?usp=sharing
https://community.looker.com/lookml-5/lookml-best-practices-1636
https://app.diagrams.net/#G1FQUUjf0suktSrpvG5jZ36_zRajJE-X51
https://cloud.google.com/bigquery/docs/batch-sql-translator#upload-files
https://drive.google.com/drive/folders/0ACKxpvoO26HwUk9PVA
https://docs.google.com/spreadsheets/d/1dN7kAz3jnozsWSwZbdPceMNE1ckwFIdf7DO-CnGrbdk/edit#gid=0
https://docs.google.com/presentation/d/1kPQsKEG0hgH74gUTWBVbRgJYEgju7lN7hP5PUOc51KY/edit#slide=id.p1
https://docs.google.com/presentation/d/1kPQsKEG0hgH74gUTWBVbRgJYEgju7lN7hP5PUOc51KY/edit#slide=id.p1
https://docs.google.com/spreadsheets/d/1o0TeTNw49J4xM1sibF5RxOyS5fFJ76GdzmR8H7YScAY/edit#gid=899451307
https://docs.google.com/document/d/1AlniWIKS_Bij5eGdY9AKdRkZ_ghs36eXMJH0GkOmm8w/edit?resourcekey=0-1wGlX1ZBZQpzOo3Y37trmg
https://docs.google.com/spreadsheets/d/104YLqWaAsk6oHMZAYlyMDSDGdB4tIyUK1cWqU-FOWDc/edit#gid=1851906439
https://connect.looker.com/library/video/lookml-editor-part-1
https://connect.looker.com/library/video/lookml-editor-part-2

 Python script to extract derived table
logic to .sql file

11 Workshop - Spectacles - Looker sql validation, etc… 9/2 - Spectacles

- Getting Started

12 Spectacles & Zendesk Data Source Change Strategy 9/6

13 Looker working session - Zendesk Changes (continuation) 9/7

Attachment II - LookML Work Session Notes

● Misc Looker IDE topics:
○ We highlighted features of Looker's IDE development interface including error

detection, context sensitive help reference, and syntax validation.
○ We confirmed Steven's comfort level with Looker’s version control capabilities

and the git repository configuration.
○ We discussed environment management and use of non-public folders for

Dashboard/Look break/fix activity.

● Reviewed Looker's Content Validator and limitations therein.
○ Find/Replace discussion re. Looker's lack of "where used" in look/tile/dashboard

functionality and...
- Hack for "where used"
 1."breaking" lookml object by commenting out
 2. Execute Content Validator, noting impacted objects
- Note on field-not-found error
 - Tiles continue to work, just aggregated (missing field removed)

- Won't see error msg in dashboard. From impacted tiles & looks /explore
from here option, will see "field not found, ignored" warning.

● Introduced UAT Checklist and Checklist Guide

○ Not entirely applicable to current engagement, but valuable content as you
continue to grow and mature your environment

○ We'll be incorporating some of the items identified here as wrap up review next
week.

● Reviewed example of long running dashboard surfaced via Looker's System
Activity/Database Performance reporting

○ Split up 33 visual dashboard (25 Looker recommended max).

https://drive.google.com/file/d/1p5f5SvFeAmKyY0gk_o5E3Ck0_7bwWvIu/view?usp=sharing
https://drive.google.com/file/d/1p5f5SvFeAmKyY0gk_o5E3Ck0_7bwWvIu/view?usp=sharing
https://www.spectacles.dev/
https://docs.spectacles.dev/cli/tutorials/getting-started/
https://docs.looker.com/data-modeling/getting-started/version-control-and-deploying-changes
https://docs.looker.com/data-modeling/getting-started/setting-up-git-connection
https://docs.looker.com/data-modeling/getting-started/setting-up-git-connection
https://cloud.google.com/looker/docs/content-validation
https://cloud.google.com/looker/docs/content-validation

○ Change default filter from static begin/end date range to dynamic (i.e. prior 12
complete months).

○ Add Dashboard to schedule in order to cache with appropriate datagroup.
(LoolML-level cache)

● Reviewed Henry utility installation, output manipulation, and resulting reports.

● Demonstrated the use of Spectacles utility for SQL validation of changes to LookML
prior to deployment.

Attachment III: OKR/KPI Investigation

FY 22’ OKR/KPI Report - Observations…

1. Report has 33 visualizations, Looker recommended max is 25. Suggest breakup
to summary/detail, or product breakouts - i.e. Orchids have several visuals.

2. Static time filter should be replaced with dynamic filter (i.e. last 12 months).

https://cloud.google.com/looker/docs/reference/param-model-datagroup
https://cloud.google.com/looker/docs/reference/param-model-datagroup
https://help.looker.com/hc/en-us/articles/4420192365075-How-to-cache-a-dashboard-Community-
https://help.looker.com/hc/en-us/articles/4420192365075-How-to-cache-a-dashboard-Community-
https://help.looker.com/hc/en-us/articles/4420192365075-How-to-cache-a-dashboard-Community-
https://www.spectacles.dev/

Attachment IV - Miscellaneous Looker Tips

Subject Item Description/References

User
Communication

Homepage Here is documentation on how you can set a custom homepage in your Looker

instance. The documentation describes how you can leverage the pre-built

homepage or you can set the default homepage to a specific board, folder, or a

Markdown file (such as a README or document file in a project). Of course you

can also set up links that link out to existing tools such as Sharepoint or

Confluence if that is where you'd like to host the documentation.

User
Communication

Homepage/
Admin side
panel

If you decide to leverage the pre-built homepage, you can take advantage of this

admin side panel feature where you can push announcements to your users and/or link

to training and internal documentation.

User
Communication

Custom Help
Menu

Another place to plug internal resources is in the the drop-down Help menu at the top

right corner of the Looker interface, read how to do so here.

Search Utility Search
Criteria

‘Sql_table_name’ - surfaces sql table based view names.

Search Utility Search
Criteria

‘%’ - surfaces ‘liquid commands’

Search Utility Search
Criteria

Bind filters: - None found.

https://docs.looker.com/admin-options/settings/homepage
https://docs.looker.com/sharing-and-publishing/presenting-content
https://docs.looker.com/admin-options/tutorials/notify-users
https://docs.looker.com/admin-options/settings/internal-help

Attachment V - Looker/BQML (plus public weather data!!) Example

Github Looker Retail Demo

https://github.com/looker-open-source/block-retail/tree/dev-david-brinegar-dwr5

Summary
● Contains two BigQuery Machine Learning (BQML) models to:

● create dynamic customer clusters based on their shopping patterns

● generate stock/sales predictions at the item-store-week level

Additional Insight Section

This project is built against a transaction-item-level table to deliver dashboards and insights that

are useful to various teams in a retail organization:

● Regional and store managers

● Merchandising and planning

● CRM and customer teams

● eCommerce teams

● Fraud detection for delivery

Optimized for Google BigQuery, it uses BigQuery nested tables and partition/cluster

keys to optimize performance.

Content Details
Required Tables:

● Transaction-level table (by transaction ID by store by item by customer)

● Store lookup (dim) table

● Item lookup (dim) table

Derives customer info from the transaction table.

Uses BigQuery's public global GHCN weather data.

Screenshots:

●

